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SUMMARY: 
The merit of probabilistic performance-based wind engineering in delivering more rational and economic designs 
has gained tremendous interest over the past two decades. Nonetheless, the inevitable need for repeated nonlinear 
analysis in propagating uncertainty can be a significant computational bottleneck. To address this issue, this work is 
focused on integrating a non-intrusive long short-term memory (LSTM) metamodeling technique with a state-of-the-
art stratified sampling scheme. To cope with the typical high-dimensionality of engineering structures, a reduced 
space is first defined by proper orthogonal decomposition over a set of high-fidelity response samples. The LSTM 
neural network is introduced to learn the sequence-to-sequence mapping from excitation to responses directly in the 
reduced space. Subsequently, in probabilistic performance assessment, the stratified sampling scheme is considered 
for efficient sampling of rare wind events. It is proposed to train an LSTM neural network first for a set of extreme 
wind intensities generated based on the statistics of the largest sample in the last stratum. Transfer learning is further 
introduced to efficiently adapt the calibrated LSTM neural network to the remaining strata. The scheme is illustrated 
on a 37-story steel frame subjected to stochastic wind excitation.  
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1. MOTIVATIONS 
Performance-based wind engineering (PBWE) is gaining significant interest as a means of 
enabling rational and sustainable designs (Ciampoli et al., 2011; Chuang and Spence, 2017; Cui 
and Caracoglia, 2018; Ouyang and Spence, 2020; Ouyang and Spence, 2021). However, the 
significant computational demand caused by the need to repeatedly evaluate nonlinear models 
during the propagation of uncertainty is an important limit to the application of PBWE in 
practice. Recently, the long short-term memory (LSTM) metamodeling technique has been seen 
to be a promising remedy to this issue (Li and Spence, 2022). Nonetheless, this metamodeling 
technique has not been fully integrated into a PBWE scheme. To bridge this gap, this work 
explores this possibility through embedding stratified sampling schemes with LSTM metamodels 
with knowledge transfer among strata by transfer learning.  
 
 
2. METHODS 
In this work, the excitation and responses are first reduced through projection by proper 
orthogonal decomposition (POD). The LSTM neural network subsequently learns the mapping 
between the reduced excitation and the reduced responses. This, compared to the previously 
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proposed scheme (Li and Spence, 2022), avoids the intrusive Galerkin scheme. For efficient 
uncertainty propagation, the LSTM metamodeling scheme is integrated into the stratified 
sampling scheme recently introduced in Arunachalam and Spence, 2023. To cope with the large 
range of wind speeds and directions required by the stratified sampling scheme, the LSTM 
neural network is first calibrated to data generated from the statistics of the largest samples in the 
most extreme stratum, i.e., the group of samples exhibiting the most severe response 
nonlinearity. The LSTM network is subsequently adapted to the remaining strata by parameter-
based transfer learning. 
 
2.1. Problem setting 
Performance assessment in PBWE is, in general, based on solving the following high-
dimensional nonlinear dynamic equations of motion: 
 
𝑴𝑴𝒙̈𝒙(𝑡𝑡) + 𝑪𝑪𝒙̇𝒙(𝑡𝑡) + 𝑭𝑭𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝑭𝑭(𝑡𝑡;𝑣𝑣𝐻𝐻 ,𝛼𝛼) (1) 
 
where 𝒙̇𝒙(𝑡𝑡) and 𝒙̈𝒙(𝑡𝑡) are the velocity and acceleration response vectors; 𝑴𝑴 and 𝑪𝑪 are the mass 
and damping matrices; 𝑭𝑭𝑛𝑛𝑛𝑛(𝑡𝑡) is the nonlinear restoring force; and 𝑭𝑭(𝑡𝑡; 𝑣𝑣𝐻𝐻 ,𝛼𝛼) is the stochastic 
wind excitation that depends on the wind speed, 𝑣𝑣𝐻𝐻, and direction, 𝛼𝛼. Eq. (1) can be solved by 
general direct integration schemes and provides the knowledge necessary for carrying out a 
probabilistic performance assessment. However, the process of solving Eq. (1) in this way is in 
general extremely time-consuming.  
 
2.2. Dimensionality reduction 
To deal with the high dimensionality of typical engineering structures, a reduced space can be 
defined by POD-based dimensionality reduction (Li and Spence, 2021). In particular, Eq. (1) can 
be seen as a high-dimensional mapping of the form 𝑭𝑭(𝑡𝑡) → 𝒙𝒙(𝑡𝑡) . Through dimensionality 
reduction, both the excitation and responses are transformed into the following reduced space: 
 
𝒑𝒑(𝑡𝑡) = 𝜱𝜱T𝑭𝑭(𝑡𝑡), 𝒒𝒒(𝑡𝑡) = 𝜱𝜱T𝒙𝒙(𝑡𝑡) (2) 
 
where 𝒑𝒑(𝑡𝑡) and 𝒒𝒒(𝑡𝑡) are reduced inputs and outputs and 𝜱𝜱 is the coordinate transformation 
matrix. To obtain 𝜱𝜱, POD is carried out on snapshots of the response collected from a set of 
response samples. Eq. (2) converts the high-dimensional problem into a low-dimensional 
mapping of the form 𝒑𝒑(𝑡𝑡) → 𝒒𝒒(𝑡𝑡). This can now be learned by LSTM neural networks. 
 
2.3. LSTM metamodeling 
A LSTM network is a type of recurrent neural network developed to be capable of learning both 
short- and long-term relationships. To facilitate training, both the time series 𝒑𝒑(𝑡𝑡) and 𝒒𝒒(𝑡𝑡) 
should be normalized and further converted to reduced series of wavelet coefficients. The LSTM 
network is then trained to predict the wavelet coefficient series by minimizing the regression 
error with appropriate gradient descent algorithms.  
 
2.4. Training and simulation strategy 
The wind hazard in PBWE is generally described as a joint complementary cumulative 
distribution (CCDF) between wind speed and direction, 𝐺𝐺(𝑣𝑣𝐻𝐻,𝛼𝛼). In implementation, this can be 
reduced to the non-directional wind speed CCDF, 𝐺𝐺(𝑣𝑣𝐻𝐻), and directionality factors. In applying 



stratified sampling, which aims to allocate samples between both frequent and rare wind speed 
events, the range of 𝑣𝑣𝐻𝐻  is divided into 𝑁𝑁𝑤𝑤  exhaustive and mutually exclusive strata, 𝐸𝐸𝑘𝑘 =
[𝑣𝑣𝐻𝐻,𝑘𝑘

lb ,𝑣𝑣𝐻𝐻,𝑘𝑘
ub ), with samples optimally generated in 𝐸𝐸𝑘𝑘. These samples are subsequently used to 

estimate a wide range of probabilistic performance metrics, including distributions, through the 
application of the law of total probability. The idea explored in this work is to train the LSTM in 
the last stratum 𝐸𝐸𝑁𝑁𝑤𝑤, i.e., the one with the most severe nonlinearity, and then adapt the network 
to the remaining strata through knowledge transfer. To ensure the capability of the network to 
cope with extreme samples during simulation (i.e., prediction), the training data for the LSTM is 
generated from, 𝑃𝑃�(𝑣𝑣𝐻𝐻), the distribution of largest values over 𝑁𝑁𝑁𝑁𝑤𝑤 samples: 
 
𝑃𝑃�(𝑣𝑣𝐻𝐻) = �𝑃𝑃𝐸𝐸𝑁𝑁𝑤𝑤(𝑣𝑣𝐻𝐻)�

𝑁𝑁𝑁𝑁𝑤𝑤  (3) 
 
where 𝑁𝑁𝑁𝑁𝑤𝑤 is the number of samples to be generated in 𝐸𝐸𝑁𝑁𝑤𝑤 during simulation mode; 𝑃𝑃𝐸𝐸𝑁𝑁𝑤𝑤(𝑣𝑣𝐻𝐻) 
is the cumulative distribution of 𝑣𝑣𝐻𝐻 ∈ 𝐸𝐸𝑁𝑁𝑤𝑤 . Once the LSTM neural network is calibrated, its 
parameters are transferred to all remaining strata and fine-tuned if necessary. It should be 
observed that, since the fine-tuning is performed for a neural network trained for scenarios with 
high nonlinearity, far less computational effort and data are required in the fine-tuning phase.  
 
 
3. CASE STUDY AND RESULTS 
The case study consists of a 37-story moment-resisting steel frame located in New York City 
(Fig. 1a). The height of the frame is 150 m, with a first story height of 6 m and the rest of 4 m. 
The width of the building is 30 m, with 6 bays of equal 5 m width. The structural system is 
composed of AISC wide flange beams and squared box-section columns.  
 

 
 

Figure 1. (a) Elevation of the steel frame; Comparison between OpenSees and metamodel for the top floor reponse: 
(b)-(d) exceedance probability curves of the interstory drift ratio, 𝐷𝐷𝐷𝐷�37, residual interstory drift ratio, 𝐷𝐷𝐷𝐷����37, and peak 

drift, 𝑢𝑢�𝑥𝑥,37; (e)-(g) simulated samples of the interstory drift ratio, residual interstory drift ratio, and peak drift. 
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The site-specific wind hazard is defined based on the annual 3 s gust wind defined by the ASCE 
7-22. The stratified sampling scheme is defined with 6 strata (wind speed intervals). Wind 
directionality is captured by the sector-by-sector approach with 8 sectors. Given wind speed and 
direction, a wind tunnel data-informed spectral POD simulator is used to generate samples of 
stochastic dynamic wind loading. Direct integration in OpenSees is adopted to simulate high-
fidelity data to calibrate and test the LSTM metamodel. The comparison of peak and residual top 
interstory drift ratio, as well as peak top drift simulated by OpenSees and the metamodel are 
shown in Fig. 1 (b-g). It is seen that the metamodel is capable of simulating all the engineering 
demand parameters of interest with remarkable accuracy, including residual responses, which are 
difficult to reproduce accurately. Moreover, the metamodel is over four orders magnitude faster 
than the corresponding direct integration in OpenSees. This accuracy and efficiency illustrates 
the potential of the metamodeling scheme in PBWE. 
 
 
7. CONCLUSIONS 
This research explored rapid PBWE assessment by integrating LSTM metamodels with transfer 
learning and uncertainty quantification by stratified sampling. In particular, the excitation and 
responses were projected into a reduced space through proper orthogonal decomposition. Within 
the implementation of the stratified sampling, an LSTM metamodel is firstly calibrated in the 
reduced space for the stratum with most extreme responses with transfer to the remaining strata. 
The efficiency and accuracy of the scheme were illustrated on a case study consisting in a 37-
story building subjected to stochastic wind excitation. It is seen the metamodel accurately 
reproduced all engineering demand parameters, including peak and residual responses, with 
computational speedups of around four orders of magnitude therefore illustrating its potential in 
performance-based wind engineering assessments. 
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